
statique avec dynamique

Highlights

Fonctionnalités avancées

- Nouveau type de cas de charge pour la définition automatique du poids propre
- Import IFC avec ajustement automatique du modèle
- Couper les pics de force de cisaillement dans les dalles de plancher au-dessus des colonnes
- Vérification contre le soulèvement des fondations

Nouveaux modules

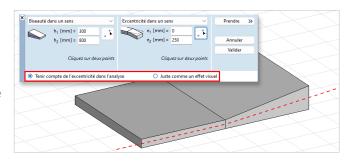
- Béton, Vérification au feu des colonnes et des poutres (RC8B)
- Béton, Vérification au feu des surfaces (RC8S)
- Interaction sol/structure (SOIL)

Highlights · AxisVM X7

Fonctions générales

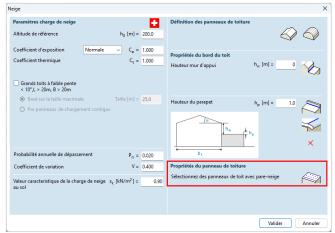
- Nouvelle structure de la base de données des sections tableau séparé pour chaque série de sections (par exemple HEA, HEB, HEM)
- Définition paramétrée des sections en Z
- La grille d'axes peut éventuellement être affectée à un seul étage ou à tous les étages
- Le serveur COM peut être réenregistré directement à partir du programme
- Les maillages de surface et de ligne peuvent être affichés/masqués séparément
- Info-bulles repensées pour les propriétés et les résultats pour une lisibilité plus facile

Interfaces & BIM


- Intégration de l'interface pdf dans le package de base (ancien module PDF)
- Export ifc des zones paramétrées (nervurée, âme creuse, dalle composite nervurée, dalle composite tôle) (IFC)
- Identification des différences lors de l'import de fichiers ifc
- Import ifc avec ajustement automatique du modèle
- Prise en charge de Revit 2023 (REV)
- Extension de l'interface à Rhino/Grasshopper et Dynamo

Définition d'éléments supplémentaires (par exemple, éléments de connexion, propriétés des ressorts, zones

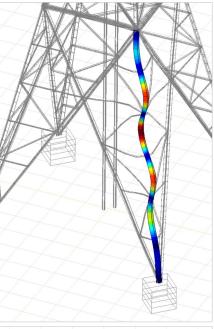
XLAM) et types de charge (par exemple, charge de neige/vent, charge liquide, charge sismique), activation de types de calcul supplémentaires (calcul non linéaire, vibrations, flambement), optimisation sections pour l'acier et le bois



- Définition du ressort pour les rotules de bord élastique linéaire/non linéaire/plastique non linéaire, force limite, réglage de la rigidité, en option avec force/déplacement défini par l'utilisateur, resp. Comportement de couple/torsion
- I'excentricité des zones peut éventuellement être prise en compte dans les calculs ou utilisée exclusivement comme effet visuel (similaire aux éléments excentriques)

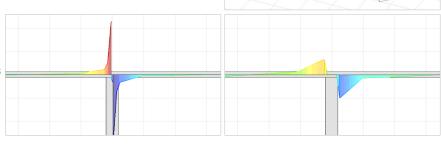
Charges

- Nouveau type de cas de charge pour la définition automatique du poids propre
- Coller dans le tableau des charges nodales à partir du presse-papiers
- ** Prise en compte des attrape-neige lors de la détermination des charges de neige (SWG)
- Détermination des charges sismiques selon l'annexe allemand révisé selon l'EuroCode 8 (SE1)
- # Fusionner les cas de charge



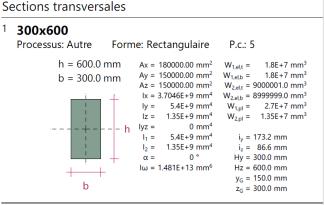
Calcul

- Détermination des centres de cisaillement des étages sans calcul sismique
- Lacul de flambement facultatif limité aux composants sélectionnés
- Tableau des paramètres de calcul pour la sortie (statique non linéaire, flambage, vibrations propres, dynamique)


Résultats et évaluation

Couper les pics de force de cisaillement dans les dalles de plancher audessus des colonnes

analogue aux pics de couple, Affichage exagéré à droite

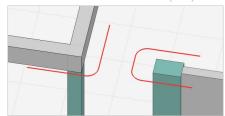

Tableau des centres de cisaillement des étages, y compris l'intégration dans les modèles d'édition

 Documentation nouvellement conçue des matériaux et des sections (édition)

Matériaux C25/30Type: Béton SIA 26x (Suisse), SN EN 206 Linéaire $f_{ck} = 25.00 \text{ N/mm}^2$ Matériau $E = 32100 \text{ N/mm}^2$ $v_c = 1.500$ Contour v = 0.20 $\phi_t = 2.00$ $\alpha_T = 1E-5 1/^{\circ}C$ $\rho = 2500 \text{ kg/m}^3$ S 235 Type: Béton SIA 26x (Suisse), SN EN 206 Linéaire $E = 210000 \text{ N/mm}^2$ $f_v = 235.00 \text{ N/mm}^2$ $f_{..} = 360.00 \text{ N/mm}^2$ 0.30 $f_v^* = 215.00 \text{ N/mm}^2$ α_T = 1E-5 1/°C 340.00 N/mm² ρ = 7850 kg/m³ Nom: Nom du matériau; Type: Type de matériau; Projet: Modèle de matériau; Ex: Module d'élasticité

d'YOUNG dans une direction X locale; Ey: Module d'élasticité d'YOUNG dans une direction Y locale; v: Coefficient de Poisson; αΤ΄: Coefficient d'expansion thermique; ρ: Densité; Matériau: Couleur du matériau; ...

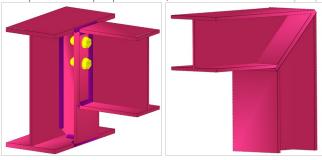
Nom: Nom de la section transversale; Processus: Processus de fabrication; h: Hauteur de la section transversale; b: Largeur de la section transversale; tw: Epaisseur de l'arme; tf: Epaisseur des ailes; τ_1 , τ_2 , τ_3 : Rayon arrondi; Ax: Surface de la section transversale; Ay, Az: Surface de cisaillement; lx: Inertie de torsion; ly, lz: Inertie de flexion; lyz: Inertie centrifuge; I1, l2: Moment d'inertie principal; τ_3 : Directions principales; τ_4 : Constante de déformation; W1,el,t, W1,el,b, W2,el,t, W2,el,b: Module...

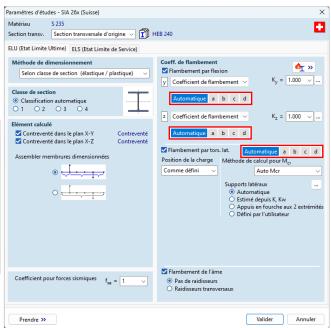

Dimensionnement

• Dimensionnement selon toutes les normes disponibles (Modules RC1234568, SD189, SC1, SE1, TD189, MD1)

Béton armé

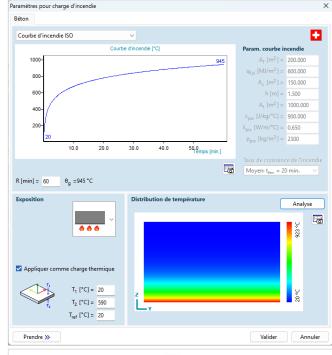
- Détermination de la résistance à la flexion et à l'effort normal des surfaces en béton armé sur la base de "l'armature réelle", y compris l'utilisation de l'armature selon la direction, séparément ou totalement (RC1)
- Détermination facultative de l'armature minimale selon SIA 262 pour les surfaces en béton armé (RC1)
- Analyse de poinçonnement des poteaux aux extrémités des murs et sous les poutres (RC3)
- Iº Options supplémentaires pour prendre en compte le cisaillement biaxial lors de la vérification des poteaux (RC2) sans, linéaire, carré
- I Vérification contre le soulèvement des fondations (RC4)
- Options avancées pour optimiser les dimensions des fondations y compris le transfert de la rigidité calculée de la fondation aux appuis ponctuels/linéaire (RC4)

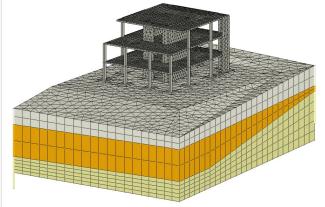




Acier

- Sélection automatique/manuelle de la courbe de contrainte de flambement séparément par direction pour le flambement latéral/latéral-torsionnel (SD1)
- Nouveaux types de connexion, y compris la documentation détaillée des vérifications Connexion de poutre avec plaque de tête, coins de cadre soudés (SC1)


Nouveaux modules


Béton, Vérification au feu des colonnes et des poutres (RC8B) et Béton, Vérification au feu des surfaces (RC8S)

- Définition de l'exposition au feu (similaire aux barres en béton armé, acier, bois)
 Courbe de feu ISO, feu extérieur, courbe de feu hydrocarbure, courbe de feu paramétrée
- Détermination automatique de la distribution de température
- Prise en compte facultative de l'exposition au feu en tant que changement de température
- Dimensionnement feu des composants de surface (RC12)

Interaction Sol/Structure (SOIL)

- Modélisation 3D du sous-sol avec des éléments de volume
- Détermination automatique du tracé de la couche sur la base de profils de forage définis
- Modèle de sol élastique linéaire avec exclusion de tension entre le sol et les fondations (calcul non linéaire)
- Calcul des contraintes et déformations dans le sol Présentation des résultats en sections

Highlights AxisVM X6

Fonctions générales

• Filtre de recherche et de sélection

Trouvez rapidement des commandes et sélectionnez des éléments par numéro, propriétés et/ou résultats

Interfaces & BIM

- Import/Export de charges via l'interface SAF vers Allplan/ArchiCAD (Module SAF)
- Import/export d'articulations d'éléments, de supports de nœuds et de lignes via l'interface Tekla (Module TI)

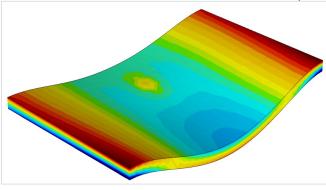
Éléments

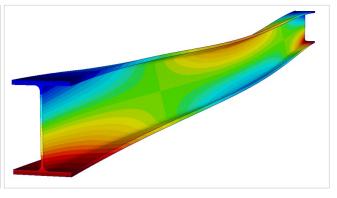
- Définition excentrique des poutres
- Appui surfacique selon Winkler-Pasternak tassement plus réaliste avec une rigidité accrue aux bords de la fondation
- Détermination de la rigidité des appuis à l'aide de modèles de sous-sol
- Elément poutre à 7 degrés de liberté (Module 7DOF) Prise en compte de la courbe de section

Charges

- Menu de sélection rapide pour le cas de charge actif
- Charges ponctuelles/linéaires excentriques sur les éléments
- Combinaisons de groupes de charges simplifiées Aperçu simple/intuitive des systèmes de charge complexes
- Charge mobile au niveau de la charge

Shear Layer Winkler Layer O Définir le moment O Définir l'excentricité de la charge HE 140 B b = 140.0 mm b = 140.0 mm c g [mm] = 70.0

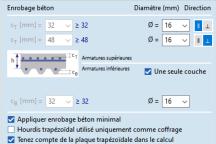

Longueur (m) >= 4.85


Calcul

Prise en compte des imperfections locales proportionnelles à la forme de flambement (Module IMP)

Résultats et édition

• Présentation des résultats sur le modèle volumique



Dimensionnement

- Calcul différencié de largeur de fissure (Module RC1)
 affichage séparé du calcul de la largeur de fissure en fonction du ferraillage requis et réel
- Dimensionnement de dalles composites en tôle avec renforcement supplémentaire (Module RC1)
- Dimensionnement au cisaillement des murs en béton armé (Module RC5)
- Calcul dimensionnement pour les colonnes en béton armé (Module RC2)
- Extension du dimensionnement des assemblages en acier
 Pliage du joint de tuyau, joint de sangle double face (Module SC1)

5

▼ Tenez compte de la plaque trapézoïdale dans le calcul

Highlights AxisVM X5

Interfaces

 Extension de la fonctionnalité BIM OpenBIM/IFC, REVIT, Tekla

- Sections transversales composites
- Éléments d'amortissement pour le calcul dynamique (module DYN)

- Division automatique des charges en cas de charge individuels en fonction de la charge ou de l'élément
- 🗲 Précontrainte des domaines et saisie simplifiée des géométries des câbles de précontrainte (Module PS1)

Résultats & Dimensionnement

- Spécification du point d'application des forces/moments résultants des cas de charge individuels
- Limitation de la largeur de fissure des zones en surface et au niveau du ferraillage (module RC1)
- Vérification du poinçonnement aux coins et aux extrémités des murs (module RC3)
- Connexions mur/dalle des abris sous forme de joint d'angle ou de boucle (Application AxisVM ITC)
- Dimensionnement des murs d'écluse dans les abris (Application AxisVM ITC)

Nouveaux modules

- Dimensionnement des murs en maçonnerie (MD1)
- Dimensionnement de murs et noyaux en béton armé
- Analyse des contraintes/déformations (RC6)
- Dimensionnement feu pour construction bois(TD8)
- Proposition de ferraillage automatique (ABV)

X[m] = 0

Y [m] = 0 Z [m] = 0

Highlights AxisVM X4

Interfaces

 Importation d'éléments à épaisseur/section variable depuis REVIT (Module REV)

Général & géométrie

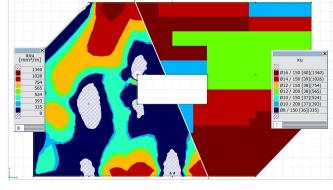
- Copies de sauvegarde automatiques et gestion des versions de modèles
- - / * Développer et intersecter des lignes
- Nettoyage automatique du modèle Supprimer les nœuds et les lignes inutiles

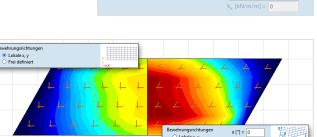
- Planchers mixtes acier/béton paramétrés
- Domaines avec matrice de rigidité définie par l'utilisateur
- Comportement non linéaire des matériaux pour le béton et la maçonnerie (Option PNL)

Charges

- Comportement sélectionnable des niveaux de charge
- Autres coefficients de forme du toit pour le calcul des charges de vent (Module SWG)

Maillage & calcul


- Effets à long terme (retrait, fluage) pour le béton (Option NL)


Dimensionnement

- Dimensionnement de renfort inclinée selon Marti/Seelhofer (Module RC1)
- Vérification de la déformation pour les profilés acier/bois (Modules SD1, TD1)

Nouveaux modules

- Dimensionnement feu pour les profilés en acier (SD8)
- Analyse de fréquence des piétons(FFA)
- Génération automatique de poutres virtuelles et de sections de segment (SEV)
- Transfert de charge (LUB)

7

sv. HE 160 B